The Effect of Quantum Teaching Method on Motivation and Arabic Language Learning Outcomes (Literature Study)

Azzahrah Istira Oktiva Pradini¹; Maman Abdurahman²; Mia Nurmala³

¹,²,³Department of Arabic Language Education, Universitas Pendidikan Indonesia, Indonesia

¹Corresponding Email: istirazhr@upi.edu, Phone Number: 0896 xxxx xxxx

Abstract: This study analyzes the effectiveness of the Quantum Teaching method in improving motivation and learning outcomes in Arabic. Researchers use descriptive qualitative research methods with a systematic approach to conduct data analysis in a simplified approach. Data was collected through database search tools and literature search stages using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) method. Article search strategies are carried out through international databases, such as Open Knowledge Maps, ResearchGate, and Google Scholar. The summary of this literature review is done using an analysis matrix. The results showed that applying the Quantum Teaching method significantly improved students' Arabic proficiency and learning outcomes. Quantum Teaching effectively improves student learning outcomes, motivation, and engagement. This method creates a comfortable, enjoyable learning environment and strengthens the interaction between teachers and students. In addition, Quantum Teaching also improves students' memory and learning potential.

A. Introduction

Arabic language education is important in improving language proficiency and cultural understanding. Arabic language skills enable individuals to engage more deeply in social, cultural, and academic activities relevant to the Arab world. According to Dr. Hanada Taha-Thomure, a professor of Arabic, "Mastering Arabic allows individuals to gain a deeper understanding of Arab culture, thus appreciating diversity and developing stronger relationships with the Arab community" (Taha-Thomure, 2018).

In addition, Arabic language education also provides wider access to knowledge and academic resources related to the Arab world. By mastering Arabic, individuals can access literature, scholarly journals, and educational resources in their native language. Dr. Mahmoud Al-Batal, an Arabic linguist, states, "Understanding Arabic provides access to the rich Arab cultural and intellectual heritage, broadens horizons, and encourages greater cross-cultural understanding" (Al-Batal et al., 2011). However, there are often barriers to creating effective and engaging learning experiences for students with diverse learning needs in Arabic language teaching.

The teaching methods commonly used in Arabic still follow conventional approaches that may not fully meet students' learning needs holistically. Dominant learning strategies, such as lectures, tend to position students as passive recipients of information so that their participation in the learning process is limited. This can lead to boredom, loss of interest, and the perception that Arabic is difficult and uninteresting. For example, in Arabic vocabulary teaching, conventional methods are often based only on passive comprehension by repeating words. Students are given vocabulary that they must memorize and redo mechanically. This approach does not allow students to experiment with using vocabulary in a meaningful context. As a result, students may have difficulty associating vocabulary with real-life situations and applying it in everyday communication. This gap highlights the need to explore alternative and innovative teaching methods to address the specific challenges in Arabic language teaching.

According to Al-Shabrawi (2017), "In the context of Arabic language learning, applicable methods play an important role in increasing student motivation and engagement, as well as improving their language understanding and proficiency". Applicable teaching methods prioritize using Arabic in the context of real communication so that students see the relevance and use of the language in everyday life. Huda (2018) revealed that the success of learning Arabic depends on the quality of subjects and learning methods that can arouse students' interest.

Creating conducive learning conditions leads us to the important role of learning methods. According to Ibrahim (2019) in his work "Arabic Language Learning: The Latest Approach," learning success is greatly influenced by the effectiveness of the methods teachers use. Effective methods cover teaching aspects and can motivate students, enrich their understanding, and stimulate interest in Arabic. Dr. Sami Bahri, an expert in Arabic language education, explains, "In Arabic language teaching, effective methods allow
students to actively engage and interact with Arabic in meaningful contexts and develop their communication skills”.

In teaching methods that allow the active participation of students, educators need to create a learning environment that allows students to interact with Arabic. This can be achieved through various activities encouraging students to speak, listen, read, and write in Arabic. The activity should be relevant to the student’s real life so that the student can see the usefulness and practicality of communicative Arabic in various situations. In this way, students acquire knowledge of Arabic grammar and vocabulary and can develop specific speaking skills and language comprehension. By presenting meaningful context, students can see how Arabic is used in situations relevant to their lives, such as everyday conversations, presentations, or discussions on topics of interest to them. Teaching methods should provide a solid foundation for students to develop their communication skills in effective Arabic.

Quantum Teaching is an interesting and effective method for finding alternative solutions to the constraints of Arabic language teaching. Quantum Teaching is a learning method developed by Bobbi DePorter and Mark Reardon. The Quantum Teaching method prioritizes active learning, where students are directly involved in the learning process. Students are encouraged to think critically, communicate and work together to build understanding. DePorter (2012) states: "Quantum learning is about making students active mentally, physically, and emotionally in the learning process".

This method uses positive reinforcement as a strategy to motivate students. Positive reinforcement is about praising, acknowledging, and celebrating a student's achievements or efforts. DePorter et al (2007) explains, "Positive reinforcement builds teacher-student relationships and gives students confidence and motivation to keep learning."

Quantum teaching applies the principles of effective classroom management to create a structured and supportive learning environment. This includes setting clear rules, scheduling time, and providing guidance and support to students. Reardon (2015) explains, "Effective classroom management is key to creating an environment conducive to effective learning. This method allows students to experience Arabic firsthand through contextual activities, simulations, role plays, and discussions. As a result, students can develop comprehensive Arabic language skills, including comprehension, speaking, reading, and writing skills.

Abdullah (2022), in his book "Learning Arabic: The Latest Approach," explains that quantum teaching methods combine active learning, positive reinforcement, and effective classroom management. This approach allows students to actively participate in learning, think critically, communicate, and work together in a supportive environment. According to Gurin (2014), quantum teaching methods create a fun and engaging learning environment for students.

Studies related to applying the Quantum Teaching method in Arabic language learning have provided evidence that this method can positive impact. For example, Al-Mansour (2022) research shows that using Quantum teaching methods significantly
improves students' speaking skills in Arabic. Another study by Khalid & Al-Khalifa (2021) showed that Quantum teaching positively impacts students' understanding of Arabic texts and ability to correctly apply grammar rules. This is reinforced by Saleh (2017) research which shows that Quantum teaching can improve students' reading comprehension skills in Arabic as a foreign language.

Ibrahim (2016), in his article entitled "Quantum Teaching: A Constructivist Approach to Teaching Arabic as a Foreign Language" discusses the concept of Quantum teaching as a constructivist approach to teaching Arabic as a foreign language. In this article, Ibrahim explains that Quantum teaching is an approach that emphasizes active, collaborative, and student-centered learning. Ibrahim also noted that the implementation of Quantum teaching requires the active role of teachers as facilitators and learning guides. Teachers play a role in creating an open, inclusive, and inspiring learning environment and providing constructive support and feedback to students. With this approach, students can feel more engaged, motivated, and actively involved in the Arabic learning process.

The theory of Quantum Teaching has gained recognition among educational professionals. In his journal titled "Quantum Teaching: Maximizing Learning Potential" Latham (2018) found that the Quantum Teaching method brings together important aspects such as student engagement, understanding concepts, and using different learning strategies. Latham also noted that this method allows students to develop critical skills, creativity, and collaboration. The Quantum Teaching method allows students to participate directly in group discussions, role plays, or collaborative projects. By involving students in these activities, they can deepen their knowledge of Arabic and develop better communication skills.

In addition, the Quantum Teaching method also emphasizes the importance of understanding concepts. When students understand concepts in depth, they can better relate new information to what they already know. In Arabic language learning, concept comprehension can include aspects of grammar, vocabulary, and sentence structure. By applying Quantum Teaching, teachers can use various strategies and techniques that enable students to understand Arabic well. This will help students master Arabic more effectively.

Furthermore, Quantum Teaching encourages the use of a variety of learning strategies tailored to student needs. Each student has a different learning style when learning Arabic, and teachers need to vary the methods and approaches used. Quantum Teaching provides a flexible framework, allowing teachers to choose the learning strategies that best suit their students. This includes multimedia, educational games, project assignments, or group discussions. By providing various learning strategies, quantum teaching can create fun and relevant learning experiences for students.

The general objective of this study is to evaluate the effectiveness of the Quantum Teaching method in improving the quality of Arabic language teaching. In particular, we seek to assess the impact on student motivation, engagement, and learning outcomes. Next, we explore practical strategies and implications of applying Quantum Teaching in Arabic lessons. By reviewing existing literature, conducting gap analysis, and reviewing expert
theories, this study aims to provide recommendations to Arabic teachers to use the Quantum Teaching method and optimize students' learning experience. From the results of this study, empirical evidence will be found that can strengthen the use of quantum teaching as an effective alternative to teaching Arabic. The implications of this research are expected to help implement Arabic teaching strategies that are more inclusive, interactive, and interesting for students with diverse learning needs.

Theoretical Studies

a) Definition Quantum Teaching

Linguistically, the word Quantum means an interaction that converts energy into light. At the same time, quantum teaching includes many interactions in and around the moment of learning. These interactions include effective learning factors that affect student success. These interactions transform students' scientific abilities and talents into a light that benefits themselves and others.

Quantum Teaching describes new ways to facilitate the learning process by integrating artistic elements and purposeful achievement. Using Quantum teaching methods, teachers can incorporate learning features into planning that drives student success. Quantum Teaching combines living documents with nuance, interaction, and difference to maximize learning moments. Quantum teaching focuses on dynamic relationships in an interactive classroom environment that form the foundation and framework for learning. Especially:

b) Quantum Teaching Design Framework

Quantum Teaching includes specific guidelines for creating effective learning environments, curriculum design, content delivery, and supporting the learning process, as well as effective ways to increase engagement by changing circumstances, increasing motivation and excitement by implementing a learning design framework called TANDUR10:

1) Cultivate, meaning to cultivate interests satisfactorily, "what is the benefit to me" (student), and the benefit of life (student). 2) Natural means creating or bringing about a common experience that all learners can understand. 3) Name means giving keywords, concepts, models, formulas, strategies, an "input". 4) Demonstration means providing opportunities for students to demonstrate what they know. 5) Repeat means showing the learner ways of repeating the material and affirming "I know that I do know this". 6) Celebrate, meaning to celebrate the successes that students have achieved, such as recognition of achievement, participation, and acquisition of skills and knowledge.

c) Key Principles of Quantum Teaching

The concept of Quantum Teaching is "Bring their world into ours and bring our world into theirs". This concept is the main rationale behind all strategies and quantum
teaching models. The purpose is to remind us about the importance of entering the student world as a first step. To get the right to teach, the first thing we must build as teachers is a real bridge in students' lives. Education is a right acquired and granted by students. Learning, by all its definitions, is an activity in itself.

In other words, learning involves all aspects of a person's personality, thoughts, feelings, body language, past knowledge, attitudes, beliefs, and future perceptions. So, since learning is about people in general, the right to facilitate learning must be given by the learner and exercised by the teacher. The teacher is expected to be the first to enter the student's world. This action will allow teachers to lead, guide, and facilitate their journey toward greater awareness and knowledge by associating what is taught with an event, the thought or feeling evoked by their family, social, sports, musical, artistic, recreational, or academic life.

d) Quantum Teaching Principles

To properly implement Quantum teaching in the classroom, teachers must understand its principles. This principle greatly influences all aspects of quantum teaching. The principles are: 1) Everything Speaks Everything is there, from the classroom environment to the teacher's body language, from the course materials and articles that the teacher shares until the Design is created, everything sends a message to the school. 2) Everything has a purpose. Everything that happens in the teacher's writing has a purpose. Everything we do has a purpose; everything in the learning component has a purpose. 3) Experience before naming The human brain develops rapidly when given complex stimuli; it stimulates curiosity. Because of this, learning is best when students have experienced the information before receiving a name for what they are learning. 4) Recognize Every Effort Learning is risky. Learning means stepping out of comfort. Students who take this step deserve recognition for their skills and independence. 5) If it is worth studying, it is worth celebrating The Celebration is the breakfast of the student champions. The celebration provides feedback on progress and increases positive emotional association with learning. Celebration is recognition of complete, engaged, and acquired skills and knowledge.

e) Elements of Quantum Teaching

There are two main parts in Quantum Teaching, namely context and Content: a strong foundation, supportive environment, and dynamic learning plan. Content teachers will find implementation skills for each curriculum, along with strategies. Students need to take responsibility for what they learn: excellent presentation, flexible facilities, study skills to learn, and life skills.

B. Method

The literature review aims to provide a comparative framework to new and previous findings to identify indications of whether progress has been made from research findings.
through extensive research and interpretation of findings from the literature related to a particular topic to determine research questions by studying and analyzing relevant literature using a systematic approach (Randolph, 2009).

This study used qualitative descriptive research. The method used in the literature review is a systematic approach to data analysis in a simplified approach. The data collection process is carried out with the database search tool used and the stages of the literature search. The data collection process uses PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) method as follows:

![Prisma Chart](https://doi.org/10.51276/edu.v4i3.519)

Figure 1. Prisma Chart
Inclusion data to determine literature review criteria are 1) source articles, 2) Empirical studies, 3) Research articles published in 2017-2023, 4) Quantum Teaching as a research topic/relevant studies, and 5) Full-text articles in English, Indonesian, and Arabic. The exclusion data in this study include: 1) Reviews are not related to quantum teaching/learning methods, and 2) Articles only contain abstracts or content sheets.

The article search strategy used in this study was obtained through a database of international journal providers, Open Knowledge Maps, Research Gate, and Google Scholar. The author opened the website https://openknowledgemaps.org. Researchers wrote down keywords, namely "quantum teaching method" and "quantum learning" Researchers used "AND" as a Boolean operator, and 128 findings appeared, then filtered with full text. There were 58 findings; in journals from 2017, there were 33, filtered again with relevant/research studies. There were 21 findings, 12 journals that did not fit the inclusion criteria, and nine journals that fit the criteria. Then the author opened https://www.researchgate.net website and wrote the keywords "quantum teaching method" and "quantum learning" There were 11 findings that were filtered with full text. Also, from 2017-2020, the author then opened the https://scholar.google.com/scholar website, 65 findings appeared using "AND" as a Boolean operator, then filtered full text as many as 25 findings, then differed from journals in 2017 as many as 27. In the filter based on Relevance/Related Studies, there were 12 findings. Furthermore, of the remaining 22 articles, 12 are included in the exclusion criteria with details, two are duplicate articles, six are case-study articles, and 4 are general articles after critical appraisal.

The data analysis used in this literature review uses a Simplified approach (Sumartiningsih, 2019). A simplified approach analyzes data by combining each paper obtained and presenting each finding. The next steps in the analysis following a simplified approach include: 1. Synthesis of each peer-reviewed literature/critique is done to identify the strengths and weaknesses of the literature data and to see the relationship between the literature and other literature. Document 2. Protect the topic from the results of any literature search where the resulting topic will reflect the research question of the literature review 3. Develop the topic by combining all topics in common by discussing the strength of the findings by examining research findings with stronger evidence or weak evidence by evaluating them critically at an early stage. 4. The naming of each topic considers the proper naming for each topic by researching the literature so that the naming on the topic is closer to the literature search results 5. Compare and review each topic by examining two things: each theme has a name and a collection of topics in the related topic, closely monitor sales and differences in each theme, then analyze, analyze, and scrutinize how each topic may be related, check the critical review of each document to assess whether the topic is available to answer each research question.
The results of the literature were obtained to test the effectiveness of the use of quantum teaching to provide improved learning outcomes and student motivation to learn Arabic and look for obstacles and benefits/advantages of the application of Quantum Learning so that it can be considered by optimizing for teachers or related agencies.

C. Result and Discussion

Data Analysis

Data analysis is carried out systematically using a simplified approach. The search results for articles that discuss the influence and effectiveness of quantum teaching methods on international journal e-resources are Research Gate 3 articles, Google Scholars 3 articles, and Open Knowledge Maps 4 articles. There are keywords in finding articles, namely quantum teaching, quantum learning, and the effectiveness of quantum methods. Researchers use "AND" as a Boolean operator. The boolean operator "AND" is intended to combine different concepts and aspects as search keywords to narrow down the document to be searched.

Critical Appraisal

Critical appraisal using JBI Critical Appraisal for Experimental Studies, included in the inclusion criteria totaling ten articles. The discussion of each article can be seen in Table 3.
Summary

A summary of the literature review on the effectiveness of quantum teaching methods is carried out by making a matrix analysis. The summary result is that the Quantum Teaching methodology significantly increases the percentage of students who achieve proficiency in Arabic learning outcomes. Quantum Teaching effectively improves learning outcomes, motivation, and student involvement in the learning process. This method creates a comfortable and enjoyable learning environment, increases motivation, interest, interaction, and mastery of learning materials, and increases memory and learning potential. Quantum Teaching positively impacts student learning outcomes, especially in subjects requiring deep understanding and high memory.

Literature Review Results

Based on the results of the literature search, ten literature that is suitable for the inclusion criteria and based on the literature review obtained about the effect of applying the quantum teaching method in Arabic language learning, and the following results can be found:

The first thematic finding is that applying the Quantum Teaching method significantly increased the percentage of students who achieved completeness in Arabic learning outcomes. The experimental group using the Quantum Teaching method had higher learning outcomes than the control group using traditional teaching methods. The Quantum Teaching method creates a comfortable and pleasant learning atmosphere, increases motivation, interest, interaction, and mastery of learning materials, and increases students' memory and learning potential. Overall, the Quantum Teaching method positively impacts student learning outcomes, especially in subjects such as Arabic, which require a deep understanding of the material and a high level of memory retention. This method focuses on creating a positive and supportive learning environment, using various teaching techniques, and engaging students' creativity and imagination can increase their motivation and interest in learning.

The second thematic finding is that applying the Quantum Learning model at MA Nurul Huda Pakandangan Barat Bluto Sumenep has positively increased student learning motivation. This research highlights the importance of teacher preparation, student participation, and non-discrimination in learning. The study also emphasizes the role of teachers in increasing student motivation by applying the principles of fun, compassion, and creativity. The study found that all teachers formulated clear learning objectives, prepared lesson plans, encouraged active participation from students, provided motivation and inspiration, gave students time to express opinions and arguments, did not discriminate against students, and conducted evaluations.

The third thematic finding, The study found that applying the Quantum Teaching model resulted in higher student learning outcomes than conventional teaching methods. The average learning outcome of students taught with the Quantum Teaching model is 85.2,
higher than that of students taught with conventional methods of, 77.3. The study also found that students in the Quantum Teaching group had a higher interest in early learning compared to the control group.

The fourth thematic finding is that the application of the Quantum Teaching model can improve the learning outcomes of Arabic students in SMP Muhammadiyah Limbung grade VII. Before implementing the model, only 4 out of 26 students (15.38%) graduated in Arabic language learning. However, after the implementation of the model, 16 students (61.54%) graduated in cycle 1, and 19 students (73.07%) graduated in cycle 2. Data were collected through observation and evaluation tests. The effectiveness of the Quantum Teaching method lies in its ability to create a more structured and systematic learning environment to increase student motivation and involvement in the learning process. This model also allows teachers to understand the different learning styles of students and adapt their teaching methods. Research shows that the application of the Quantum Teaching model can significantly improve student learning outcomes.

The fifth thematic finding is that the application of Quantum Teaching in teaching Arabic to grade 3 elementary school students improves their learning outcomes. Using oral tests to measure students' vocabulary mastery has proven effective. Student learning outcomes through the quantum teaching model in Arabic subjects in grade III MIS Islamiyah Merabuan for the 2019-2020 academic year with the following steps: a) teachers provide oral tests; b) The teacher shows one of the pictures then the student replies by mentioning his mufradat.

The sixth thematic finding, based on the analysis of the data, can be concluded that both the quantum learning model in the experimental class and the TPS (think pair share) learning model in the control class are effective but do not have a significant difference in effectiveness in terms of mastery of Arabic vocabulary of students. However, there is a significant difference in effectiveness in the two learning models regarding learning motivation, with the quantum learning model being more effective than the TPS (think pair share) learning model.

Based on the evaluation results in cycle II, the seventh thematic finding showed that learning completeness was 88.8% with an average score of 70, which shows that student learning completeness has been achieved. Teachers have tried to correct shortcomings in the previous cycle, and the interaction between teachers and students has improved so that student and teacher activities have increased. Therefore, the conclusion is that the learning activity succeeded in achieving the desired results.

The Quantum Teaching model is a learning model that pays attention to student emotions, which helps teachers accelerate student learning. The Quantum Teaching method positively influences student learning outcomes, especially in terms of increasing student interest and motivation. This method emphasizes the importance of the emotional connection between students and their experiences, as well as the role of teachers in creating a dynamic and engaging learning environment.
The eighth thematic finding is that implementing the Quantum Teaching model was systematic and effective in improving the Arabic learning outcomes of grade 7 students at SMP Muhammadiyah Limbung. This study concluded that using the Quantum Teaching model can improve students’ learning outcomes, interest, and enthusiasm for learning Arabic.

In the ninth thematic finding, the results showed increased student learning outcomes in cycle II, which indicated that using quantum learning methods succeeded in improving student learning. Researchers concluded that quantum learning models effectively create positive attitudes towards learning, motivate students, develop lifelong learning skills, build self-confidence, and encourage success. The use of quantum learning methods is also seen as a solution to make the learning process more effective and relevant to the disruptive era of 4.0, especially for millennial students. Therefore, the results show that quantum learning models can be a useful approach to improve student learning outcomes and answer the challenges of the disruptive era 4.0.

The tenth thematic finding is that the successful application of Quantum Teaching in language learning is associated with teachers' active and positive learning activities, which can increase understanding and motivation to learn. Quantum Teaching can be used in a variety of language learning contexts, such as classroom-based learning, online learning, and blended learning. This method can be applied to different subjects and topics and adapted to meet the needs of different learners. This method also focuses on developing students' critical thinking skills, creativity, and problem-solving skills.

Table 1. Matrix of Literature Results

<table>
<thead>
<tr>
<th>Author, Title, Journal</th>
<th>Method Design</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Husnah, Z. (2017). Efektivitas Penerapan Metode Quantum Teaching terhadap Peningkatan Hasil Belajar Bahasa Arab Siswa MAN Polewali Mandar. JPPI (Jurnal Pendidikan Islam Pendekatan Interdisipliner), 1(1), 80-91.</td>
<td>quasi-experiment</td>
<td>The Quantum Teaching method significantly improves Arabic learning outcomes at MAN Polewali Mandar. The experimental group using the Quantum Teaching method experienced a higher improvement in learning outcomes compared to the control group using conventional teaching methods. The percentage of students who achieved completion in the experimental group increased from 57.14% to 78.57%, while the percentage of the control group increased from 40.74% to 44.44%.</td>
</tr>
<tr>
<td>Maulidi, A. (2022). Implementasi model pembelajaran quantum learning dalam meningkatkan motivasi belajar. Fakta: Jurnal Pendidikan Agama Islam, 2(1), 13-22.</td>
<td>qualitative-field (interview)</td>
<td>The study showed that implementing the Quantum Learning model at MA Nurul Huda Pakandangan Barat Bluto Sumenep positively increased student learning motivation. The study reported that all teachers formulated clear learning objectives, prepared lesson plans, encouraged active participation</td>
</tr>
<tr>
<td>Author, Title, Journal</td>
<td>Method Design</td>
<td>Result</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Pradini, A. I. O., Abdurahman, M., & Nurmala, M.</td>
<td></td>
<td>from students, provided motivation and inspiration, gave time to students to express their opinions and arguments, did not discriminate against students, and conducted evaluations.</td>
</tr>
<tr>
<td>Fitri, R. A., Adnan, F., & Irdamurni, I. (2021). Pengaruh Model Quantum Teaching terhadap Minat dan Hasil Belajar Siswa di Sekolah Dasar. Jurnal Basicedu, 5(1), 88-101.</td>
<td>quasi-experiment</td>
<td>The study found that applying the Quantum Teaching model produced higher student learning outcomes than conventional teaching methods. The average learning outcome of students taught with the Quantum Teaching model was 85.2, higher than that of students taught with conventional methods, which was 77.3. This study also found that students in the Quantum Teaching group had a higher initial learning interest compared to the control group. [1]</td>
</tr>
<tr>
<td>Rahmawati, R., Razaq, A. R., & Ibrahim, M. (2021). Implementasi Peranan Quantum Teaching dalam Pembelajaran Bahasa Arab Kelas VII SMP Muhammadiyah Limbung Gowa Sulawesi Selatan. Al-Maraji: Jurnal Pendidikan Bahasa Arab, 5(2), 32-49.</td>
<td>Classroom action research (PTK)</td>
<td>This study's findings indicate that applying the Quantum Teaching model can improve the learning outcomes of the Arabic language of seventh-grade students of SMP Muhammadiyah Limbung. Before the application of the model, only 4 out of 26 students (15.38%) passed in Arabic learning, but after the application of the model, 16 students (61.54%) passed in cycle 1, and 19 students (73.07%) passed in cycle 2. Data were collected through observation and evaluation tests.</td>
</tr>
<tr>
<td>Munawarah, M., Haniah, H., & Abunawas, K. (2020). The Effectiveness of Quantum Learning to Increase Motivation and Mastery of Arabic Vocabulary of Learners. An Nabighoh, 22(02), 259-280.</td>
<td>Quasi-experimental</td>
<td>Based on the results of data analysis, there is a significant difference in the effectiveness of the two learning models in terms of learning motivation, where the quantum learning model is more effective than the TPS (think pair share) learning model (Asymp. Sig (2-tailed) = 0.007 <0.05). The mean control class vocabulary mastery score increased from 47.60 to 77.20, while the experimental class increased from 42.18 to 81.45. The mean or average score of learning motivation in the control class</td>
</tr>
</tbody>
</table>
Author, Title, Journal | Method Design | Result
--- | --- | ---
Rauhillah, S. (2016). Peningkatan Minat Belajar Siswa Melalui Penerapan Prinsip-Prinsip Quantum Teaching pada Mata Pelajaran Bahasa Arab. *Jurnal Penelitian Tarbawi: Pendidikan Islam dan Isu-Isu Sosial*, 1(1), 50-61. | Classroom action research (PTK) | The evaluation results in cycle II showed that learning completeness was 88.8%, with an average score of 70, which indicated that student learning completeness had been achieved. The teacher has tried to improve the shortcomings of the previous cycle, and the interaction between teachers and students has improved so that student and teacher activities have increased.

Rahmawati, R., Razaq, A. R., & Ibrahim, M. (2021). Implementasi Peranan Quantum Teaching dalam Pembelajaran Bahasa Arab Kelas VII SMP Muhammadiyah Limbung Gowa Sulawesi Selatan. *Al-Maraji*: *Jurnal Pendidikan Bahasa Arab*, 5(2), 32-49. | Classroom action research (PTK) | The results showed that applying the Quantum Teaching model could improve the learning outcomes of the Arabic language of seventh-grade students of SMP Muhammadiyah Limbung. Individual completeness is achieved if it reaches a score >70 with 80% classical completeness. After achieving 80% classical completeness, using the Quantum Teaching model can improve students’ Arabic learning outcomes.

Budiarti, M. (2020). Pembelajaran Maharah Kalam dengan Model Quantum Learning dalam Rangka Menghadapi Era Desruptif 4.0 Dikalangan Milenial. *Al-Muktamar As-Sana'i li Al-Lughah Al-'Arabiyyah (MUSLA)*, 1(1), 43-56. | Classroom action research (PTK) | The result of the study in cycle II showed an improvement in student learning outcomes, with all 34 students who took the test scoring above 75, the highest score being 100, and the lowest being 80. Based on these results, the researcher concluded that the study had been successful and that it was not necessary to continue beyond cycle II

Chalik, S. A. (2022). Quantum Teaching dalam Pembelajaran Bahasa Arab. *Jurnal Shaut Al-Arabiyyah*, 10(2), 213-226. | qualitative (literature study) | The successful implementation of Quantum Teaching in language learning is due to the teacher's active and positive learning activities, which can increase understanding and motivation to learn.

Discussion

Several discussions can be taken Based on the literature's findings regarding the application of the Quantum Teaching method. First, quantum teaching methods have proven effective in improving student learning outcomes for Arabic subjects. This method creates a comfortable, fun learning atmosphere and increases motivation, interest, interaction, and mastery of learning material. This suggests that an approach focusing on a positive learning environment and using innovative teaching techniques can increase student motivation and interest in learning.
Second, the importance of the teacher's role in increasing student motivation by applying the principles of fun, compassion, and creativity is also highlighted. Teachers should develop clear learning objectives, and lesson plans, encourage active student participation, provide motivation and inspiration, provide space for students to express opinions, and conduct evaluations. By doing so, teachers can create a supportive learning environment that positively influences student motivation.

Based on these results, the solution offered is the importance of applying the teaching method and paying special attention to aspects that can increase student motivation. Teachers should create a positive and enjoyable learning environment that engages students' creativity and imagination while paying attention to students' individual needs and learning styles. Guru also needs to praise and appreciate students as a form of positive encouragement. In addition, accommodating diverse learning styles as part of implementing Quantum Teaching can be beneficial. This can be achieved by combining multimodal teaching techniques, differentiated teaching, and prioritizing student interests. With this solution's implementation, student motivation and interest in learning will be expected to continue to increase to improve student learning outcomes.

In Arabic language learning, the Quantum Teaching method can be integrated with various active and interactive learning techniques. Teachers can utilize creative methods, such as images, oral exams, and students' active participation in answering questions. This can help students better understand the subject matter and maintain an interest in learning Arabic. In addition, integrating technology into learning can also be an effective solution to enrich students' learning experiences.

D. Conclusion

In conclusion, this research hypothesis aims to test the effectiveness of quantum teaching methods in Arabic language learning. Findings from literature reviews consistently show that the application of Quantum Teaching significantly improves learning outcomes, motivation, interest, interaction, and mastery of learning materials. Quantum Teaching has positively impacted Arabic language teaching, highlighting its potential as a valuable pedagogical approach in various subjects and learning contexts. This research supports the hypothesis that Quantum Teaching effectively improves student learning in Arabic language teaching.

The implications of this research will benefit educators and practitioners in Arabic language education. These findings highlight the importance of implementing innovative and adaptive learning methods, such as Quantum Teaching, to improve student learning outcomes and meet diverse learning needs. Educators can apply the principles of Quantum Teaching, including creating supportive and interactive classroom atmospheres, using diverse teaching techniques, and encouraging creativity and critical thinking to improve learning outcomes and student engagement.

For future research, it is advisable to explore the effectiveness of Quantum teaching
in different educational environments and with diverse student populations. Comparative studies can be conducted to examine the differential effects of quantum teaching in different cultural and linguistic contexts. Furthermore, studying the application of online education in an online learning environment or blended learning can provide insight into its adaptability and effectiveness in the digital age. These future studies will contribute to a more comprehensive understanding of the potential of Quantum teaching and expand its application in Arabic language teaching and beyond.

References

